Lesson Plan

Name of Assistant Professor: Mr. Hardeep

Class: B.Sc. Semester: 4th

Subject: PHYSICAL CHEMISTRY-III: STATES OF MATTER & CHEMICAL KINETICS Lesson Plan: From 16 January 2023 to 12 May 2023.

	Postulates of Kinetic Theory of Gases and derivation
Week 1 16.01.2023- 22.01.2023	of the kinetic gas equation. Deviation of real gases
	from ideal behaviour, compressibility factor, causes
	of deviation
	van der Waals equation of state for real gases. Boyle
Week 2 23.01.2023- 29.01.2023	temperature (derivation not required). Critical
	phenomena, critical constants and their calculation
	from van der Waals equation. Andrews isotherms of
	CO2.
	Maxwell Boltzmann distribution laws of molecular
Week 30.01.2023 -05.02.2023	velocities and molecular energies (graphic
	representation – derivation not required) and their
	importance.
	Temperature dependence of these distributions. Most
Week 4 06.02.2023- 12.02.2023	probable, average and root mean square velocities (no
	derivation). Collision cross section, collision number,
	collision frequency, collision diameter and mean free
	path of molecules.
	Liquids: Surface tension and its determination using
Week 5 13.02.2023-19.02.2023	stalagmometer. Viscosity of a liquid and determination
	Holi Vacations
Week 6 20 02 2023- 26 02 2023	Tion vacations
WCCR 0 20.02.2023- 20.02.2023	Effect of temperature on surface tension and
Week 7 27 02 2023- 05 03 2023	coefficient of viscosity of a liquid (qualitative treatment
WCCK / 27.02.2023-03.03.2023	only).
	Solids: Forms of solids. Symmetry elements, unit cells,
Week 8 06.03.2023- 12.03.2023	crystal systems, Bravais lattice types and identification
	of lattice planes.
	Laws of Crystallography - Law of constancy of interfacial
Week 9 13.03.2023- 19.03.2023	angles, Law of rational indices. Miller indices. X–Ray
	diffraction by crystals, Bragg's law.
Week 10 20.03.2023- 26.03.2023	Structures of NaCl, KCl and CsCl (qualitative treatment
	only).Defects in crystals.
Week 11 27.03.2023-02.04.2023	Chemical Kinetics: The concept of reaction rates. Effect
	of temperature, pressure, catalyst and other factors on
	reaction rates. Order and molecularity of a reaction.
Week 12 03.04.2023-09.04.2023	Derivation of integrated rate equations for zero, first
	and second order reactions (both for equal and unequal
	concentrations of reactants).
Week 15 10.04.2023- 16.04.2023	Hail-life of a reaction. General methods for

	determination of order of a reaction. Concept of activation energy and its calculation from Arrhenius equation.
Week 14 17.04.2023-23.04.2023	Theories of Reaction Rates: Collision theory and Activated Complex theory of bimolecular reactions. Comparison of the two theories (qualitative treatment only).
Week 15 24.03.2023-30.04.2023	Test, Assignment
Week 16 01.05.2023-08.05.2023	Revision
Week 1709.05.2023-12.05.2023	Revision

Note: - This lesson plan is tentative.

HOD

Principal

Lesson Plan

Name of Assistant Professor: Mr. Hardeep

Class: B.Sc. Semester: 6th

Subject: SPECTROSCOPY & PHOTOCHEMISTRY and QUANTUM CHEMISTRY Lesson Plan: From 16 January 2023 to 12 May 2023.

	Interaction of electromagnetic radiation with molecules
Week 1 16.01.2023- 22.01.2023	and various types of spectra; BornOppenheimer
	approximation. Rotation spectroscopy: Selection rules,
	intensities of spectral lines, determination of bond
	lengths of diatomic and linear triatomic molecules,
	isotopic substitution.
	Vibrational spectroscopy: Classical equation of
Week 2 23.01.2023- 29.01.2023	vibration, computation of force constant, amplitude of
	diatomic molecular vibrations, anharmonicity, Morse
	potential, dissociation energies, fundamental
	frequencies, overtones, hot bands, degrees of freedom
	for polyatomic molecules, modes of vibration, concept
	of group frequencies. Vibration-rotation spectroscopy:
	diatomic vibrating rotator, P. O. R branches
	Raman spectroscopy: Qualitative treatment of
Week 30 01 2023 -05 02 2023	Rotational Raman effect: Effect of nuclear spin.
	Vibrational Raman spectra. Stokes and anti-Stokes lines:
	their intensity difference, rule of mutual exclusion.
	Electronic spectroscopy: Franck-Condon principle,
Week 4 06.02.2023- 12.02.2023	electronic transitions, singlet and triplet states.
	fluorescence and phosphorescence, dissociation and
	predissociation, calculation of electronic transitions of
	polyenes using free electron model
	Nuclear Magnetic Resonance (NMR) spectroscopy:
Week 5 13 02 2023-19 02 2023	Principles of NMR spectroscopy Larmor precession
WCCR 5 15.02.2025-15.02.2025	chemical shift and low resolution spectra. different
	scales spinspin coupling and high resolution spectra
	interpretation of PMR spectra of organic molecules.
	Electron Spin Resonance (ESR) spectroscopy: Its
Week 6 20 02 2023- 26 02 2023	principle, hyperfine structure, ESR of simple radicals.
	Characteristics of electromagnetic radiation Lambert-
Week 7 27 02 2023- 05 03 2023	Beer's law and its limitations inhysical significance of
WCCK / 21.02.2025-05.05.2025	absorption coefficients Laws of photochemistry
	quantum vield actinometry, examples of low and high
	quantum vields
	Holi Vacations
Week 8 06.03.2023- 12.03.2023	
	photochemical equilibrium and the differential rate of
Week 9 13.03.2023- 19.03.2023	photochemical reactions, photosensitised reactions.
	quenching. Role of photochemical reactions in
	biochemical processes, photostationary states.
	chemiluminescence.
Week 10 20.03.2023- 26.03.2023	Postulates of guantum mechanics, guantum mechanical
	operators, Schrödinger equation and its application to

	free particle and "particle-in-a-box" (rigorous
	treatment), quantization of energy levels, zero-point
	energy
Week 11 27.03.2023-02.04.2023	Heisenberg Uncertainty principle; wavefunctions,
	probability distribution functions, nodal properties,
	Extension to two and three dimensional boxes,
	separation of variables, degeneracy.
Week 12 03.04.2023-09.04.2023	Qualitative treatment of simple harmonic oscillator
	model of vibrational motion: Setting up of Schrödinger
	equation and discussion of solution and wave functions.
	Vibrational energy of diatomic molecules and zero-
	point energy.
Week 13 10.04.2023- 16.04.2023	Angular momentum: Commutation rules, quantization
	of square of total angular momentum and zcomponent.
	Rigid rotator model of rotation of diatomic
	molecule.Schrödinger equation.
Week 14 17.04.2023-23.04.2023	Qualitative treatment of hydrogen atom and hydrogen-
	like ions: setting up of Schrödinger equation in spherical
	polar coordinates, radial part, quantization of energy
	(only final energy expression). Average and most
	probable distances of electron from nucleus.
Week 15 24.03.2023-30.04.2023	Setting up of Schrödinger equation for many-electron
	atoms (He, Li). Need for approximation methods.
	Statement of variation theorem and application to
	simple systems (particle-in-a-box, harmonic oscillator,
	hydrogen atom).
Week 16 01.05.2023-08.05.2023	Chemical bonding: Covalent bonding, valence bond and
	molecular orbital approaches, LCAO-MO treatment of
	H2 + . Bonding and antibonding orbitals.Qualitative
	extension to H2. Comparison of LCAOMO and VB
	treatments of H2 (only wavefunctions, detailed solution
	not required) and their limitations.
Week 1709.05.2023-12.05.2023	Refinements of the two approaches (Configuration
	Interaction for MO, ionic terms in VB). Qualitative
	description of LCAO-MO treatment of homonuclear and
	heteronuclear diatomic molecules (HF, LiH).

Note: - This lesson plan is tentative.

Principal

HOD